Expert-In-The-Loop Causal Discovery: Iterative Model Refinement Using Expert Knowledge

Ankur Ankan Johannes Textor

Institute for Computing and Information Sciences Radboud University, The Netherlands

Expert-In-The-Loop Causal Discover

What is Causal Discovery?

Directed Acyclic Graph (DAG)

э

イロト 不得 トイヨト イヨト

Existing Algorithms

Method	Year	Туре
PC [223]	1993	constrain
CCD [196]	1996	constrain
FCI [223]	2000	constrain
TPDA [31]	2002	constrain
CPC [190]	2006	constrain
KCL [227]	2007	constrain
ION [234]	2008	constrain
IDA [153]	2009	constrain
cSAT+ [237]	2010	constrain
KCI-test [266]	2012	constrain
RFCI [38]	2012	constrain
CHC [65]	2012	constrain
SAT [108]	2013	constrain
Parallel-PC [141]	2014	constrain
RPC [89]	2013	constrain
PC-stable [37]	2014	constrain
COmbINE [236]	2015	constrain
backshift [204]	2015	
IGSP [256]	2018	constrain
σ-CG [57]	2018	constrain
CCI [225]	2018	constrain
FCI-soft [132]	2019	constrain
IBSSI [32]	2020	constrain
CD-NOD [106]	2020	constrain
psi-FCI [112]	2020	constrain
LCDI [264]	2020	constrain
EG [53]	2009	score
TWILP [182]	2014	score
K2 [39]	1992	score
LB-MDL [140]	1994	score
HGC [93]	1995	score
GES [34]	2002	score

OS [231]	2005	score
HGL [92]	2005	score
Meinshausen [159]	2006	score
Graphical Lasso [60]	2008	score
BC [9]	2008	score
TC [185]	2008	score
HG [91]	2008	score
Adaptive Lasso [217]	2010	score
GIES [90]	2012	score
CD [62]	2013	score
GBN learner [239]	2013	score
GES-mod [4]	2013	score
Pen-PC [87]	2015	score
Scalable GBN [6]	2015	score
K-A* [208]	2016	score
NS-DIST [88]	2016	score
MIP-GD [181]	2017	score
CD2 [85]	2018	score
SP [192]	2018	score
VAR [261]	2018	score
GSF [105]	2018	score
bQCD [229]	2020	score
GCL [244]	2020	score
GGIM [56]	2020	score
GYKZ 62	2020	score
SLARAC etc. [252]	2020	score
Order-MCMC [61]	2003	sampling
OG [54]	2008	sampling
EE-DAG [269]	2011	sampling
ZIPBN [35]	2020	sampling
LINGAM [216]	2006	asymmetries
LV LINGAM [103]	2008	asymmetries
non-linear ANM [102]	2008	asymmetries
CAN [115]	2009	asymmetries
CCM [226]	2012	asymmetries
IGCI [114]	2012	asymmetries
KCDC [161]	2018	asymmetries
MMHC [238]	2006	hybrid
ARGES [171]	2018	hybrid
a second provide		

Method	Year	Data
CMS [152]	2014	low
NO TEARS [267]	2018	low
CGNN [75]	2018	low
Graphite [83]	2019	low/medium
SAM [122]	2019	low/medium
DAG-GNN [262]	2019	low
GAE [177]	2019	low
NO BEARS [142]	2019	low/medium/high
Meta-Transfer [19]	2019	Bi
DEAR [214]	2020	high
CAN [167]	2020	low/medium/high
NO FEARS [251]	2020	low
GOLEM [176]	2020	low
ABIC [20]	2020	low
DYNOTEARS [178]	2020	low
SDI [124]	2020	low
AEQ [64]	2020	Bi
RL-BIC [272]	2020	low
CRN [125]	2020	low
ACD [151]	2020	low
V-CDN [145]	2020	high
CASTLE (reg.) [138]	2020	low/medium
GranDAG [139]	2020	low
MaskedNN [175]	2020	low
CausaIVAE [257]	2020	high
CAREFL [126]	2020	low
Varando [244]	2020	low
NO TEARS+ [268]	2020	low
ICL [250]	2020	low
LEAST [271]	2020	low/medium/high

List of causal discovery algorithms ¹

¹Vowels, Matthew J., Necati Cihan Camgoz, and Richard Bowden. "D'ya like dags? A survey on structure learning and causal discovery." (🚊) 🖉 🕤 🖓 🔍

- However, in applied research their adoption is limited.
- Tennant et al. (2021)²: Reviewed 234 papers in health science reporting DAGs.
 - None employed causal discovery methods.
- Petersen et al. $(2021)^3$:

"Although causal discovery algorithms have been available for a long time, their use in epidemiology is limited to only a few studies"

 $^{^{2}}$ Tennant, et al. "Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations." International Journal of Epidemiology.

³Petersen, et al. "Data-driven model building for life-course epidemiology." American Journal of Epidemiology" 🕢 🗆 🕨 🌾

Causal Discovery in Practice

Gap in causal discovery method development and their application.

• Lack of Trust:

- Most algorithms are asymptotically consistent.
- But finite sample properties are not well understood.
- May produce outputs that contradict domain knowledge.
- Lack of performance evaluation methods.

• Outputs Markov Equivalence Class:

- Multiple DAGs are consistent with an observational dataset.
- Algorithms can only recover the Markov Equivalence Classes.
- Downstream tasks like identification, and effect estimation typically require a fully specified DAG.

As a result, practitioners mostly draw DAGs using only domain knowledge.

Image: A image: A

- Expert-In-The-Loop Causal Discovery tries to address this gap.
- We believe domain experts:
 - ▶ are often good at determining causal directions, i.e., ancestral relationships.
 - may sometimes struggle to identify absence of casual links.
 - can find it difficult to distinguish direct from indirect effects.
- Expert-In-The-Loop assists practitioners in constructing DAGs:
 - Suggests addition or removal of edges.
 - Lets the expert choose and specify ancestral relationships.
 - Keeps the expert in control of the model building process.

Algorithm: Expert-In-The-Loop

```
Function EXPERTINLOOP(V, D, A):
    E_p \leftarrow \emptyset /* Current edges
                                                                                */
    B \leftarrow \emptyset /* Edges that were pruned or removed from
         cvcle
                                                                                */
    repeat
         E \leftarrow E_p
        (V, E, B) \leftarrow \text{Expand}(V, E, \mathcal{D}, \mathcal{A}, B, 1)
     (V, E_p) \leftarrow \text{PRUNE}(V, E, \mathcal{D})
        B \leftarrow B \cup \{E \setminus E_p\}
    until E = E_p
    return (V,E)
```

- 本間 ト イヨト イヨト

Algorithm: Expand

```
Function EXPAND(V, E, D, A, B, k):
    L \leftarrow \{\}
    foreach X, Y where X \rightarrow Y \notin E \cup B and Y \rightarrow X \notin E \cup B do
         Z be a set that d-separates X and Y in (V, E)
         if \mathcal{D}(X, Y, \mathbf{Z}) = 0 then
          L \leftarrow L \cup \mathcal{A}(X, Y)
         end
         if |L| > k then
              go to 12
         end
    end
    R \leftarrow \text{FIXCYCLES}(V, E \cup L, \mathcal{D})
    B \leftarrow B \cup R; E \leftarrow (E \cup L) \setminus R
    return (V, E, B)
```

```
Function PRUNE(V, E, D):
    R \leftarrow \{\}
    foreach X \rightarrow Y \in E do
         let Z be a set that d-separates X and Y in (V, E \setminus \{X \to Y\})
        if \mathcal{D}(X, Y, \mathbf{Z}) = 1 then
         R \leftarrow R \cup \{X \to Y\}
         end
    end
    E \leftarrow E \setminus R
    return (V, E)
```

э

イロト 不得下 イヨト イヨト

Examples

- For theoretical analysis, we assume d-separation oracle and an expert oracle.
- We consider two types of expert oracles.
 - Strong Oracle: Always gives the correct ancestral relationship including if there is no ancestral relationship.
 - ▶ Weak Oracle: Gives correct answers when an ancestral relationship exists; otherwise can give an incorrect answer.
- Both of these oracles are able to recover the correct DAG.

Empirical Analysis: Comparison with Other Algorithms

- Simulated linear Gaussian data from random DAGs.
- Simulated expert responses with accuracy α as:

$$egin{aligned} & x = \mathrm{rand}([0,1]) \ & \mathrm{Expert}(lpha) = egin{cases} \mathrm{True} & \mathrm{Ancestral} \; \mathrm{Reln.}, & \mathrm{if} \; x <= lpha \ & \mathrm{rand}(X o Y, Y \leftarrow X, \mathrm{None}) & \mathrm{otherwise} \end{aligned}$$

• Compared the SHD and SID with other algorithms.

Empirical Analysis: Comparison with Other Algorithms

Comparison of PC, Hill-Climb Search, and GES algorithms with EXPERTINLOOP algorithm with varying values of expert accuracy, $\alpha = \{0.1, 0.3, 0.5, 0.7, 0.9\}$.

• Total Residual Association: An absolute measure of DAG fit, τ :

$$\tau = \sum_{\substack{X,Y \in V \\ X \to Y,Y \to X \notin E}} \phi(X,Y,\operatorname{pa}_G(X) \cup \operatorname{pa}_G(Y))$$

where $\phi(X, Y, Z)$ is the effect size of a conditional independence test $X \perp Y | Z$ • τ approaches 0 with improving model fit.

• Unlike likelihood based measures, au can be used to validate the fit of the DAG.

Empirical Analysis: Total Residual Association

Expert-In-the-Loop causal discovery on the Adult Income dataset. Two measures of fit are shown over 30 iterative modifications: total residual association (lower is better); log-likelihood (right, higher is better).

Practical Implementations: Web-Based Tool

Expert-In-The-Loop Causal Discovery

э

Practical Implementations: Python Implementation

```
1. from pgmpy.estimators import ExpertInLoop
 2. from pgmpy.utils import llm pairwise orient
 3.
 4. descriptions = {
 5.
        "Age": "The age of a person".
 6.
        "Workclass": "The workplace where the person is ...",
        "Education": "The highest level of education the ...".
 7.
        "MaritalStatus": "The marital status of the person",
 8.
 9.
        "Occupation": "The kind of job the person does.".
10
        "Relationship": "The relationship status of the person".
        "Race": "The ethnicity of the person".
11.
12
13. }
14
15. dag = ExpertInLoop(data).estimate(
16.
        variable descriptions=descriptions.
17.
        orientation fn=llm pairwise orient.
        llm model="gemini/gemini-1.5-flash".
18
19
        pval threshold=0.05.
        effect size threshold=0.05
20.
21.)
```

イロト 不得下 イヨト イヨト

- Expert-In-The-Loop: An iterative and interactive approach to assist in constructing DAGs.
- Outperforms fully automated algorithms if the expert correctly orients edges in at least two-thirds of cases.
- Propose Total Residual Association as a measure to validate the fit of a DAG.
- Iterative improvement risks overfitting.
- The assumption of no unobserved confounding is restrictive.